Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions modules/SequencesExtTheorems.tla
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,10 @@ THEOREM ConsAppend ==
ASSUME NEW S, NEW seq \in Seq(S), NEW x \in S, NEW y \in S
PROVE Cons(x, Append(seq, y)) = Append(Cons(x,seq), y)

THEOREM ConsConcat ==
ASSUME NEW S, NEW e \in S, NEW ls \in Seq(S), NEW rs \in Seq(S)
PROVE Cons(e, ls) \o rs = Cons(e, ls \o rs)

THEOREM ConsInjective ==
ASSUME NEW S, NEW e \in S, NEW s \in Seq(S), NEW f \in S, NEW t \in Seq(S)
PROVE Cons(e,s) = Cons(f,t) <=> e = f /\ s = t
Expand Down Expand Up @@ -470,6 +474,19 @@ THEOREM FoldLeftType ==
\A t,u \in Typ : op(t,u) \in Typ
PROVE FoldLeft(op, base, seq) \in Typ

(**************************************************************************)
(* Interaction of FoldLeft and concatenation when op is associative and *)
(* base is a right identity. *)
(**************************************************************************)
THEOREM FoldLeftConcat ==
ASSUME NEW Typ, NEW op(_,_), NEW base \in Typ,
\A t,u \in Typ : op(t,u) \in Typ,
\A t,u,v \in Typ : op(t, op(u,v)) = op(op(t,u), v),
\A t \in Typ : op(t, base) = t,
NEW ls \in Seq(Typ), NEW rs \in Seq(Typ)
PROVE FoldLeft(op, base, ls \o rs) =
op(FoldLeft(op, base, ls), FoldLeft(op, base, rs))

(**************************************************************************)
(* Recursive characterization of FoldRight. *)
(**************************************************************************)
Expand Down Expand Up @@ -502,6 +519,19 @@ THEOREM FoldRightType ==
\A t,u \in Typ : op(t,u) \in Typ
PROVE FoldRight(op, seq, base) \in Typ

(**************************************************************************)
(* Interaction of FoldRight and concatenation when op is associative and *)
(* base is a left identity. *)
(**************************************************************************)
THEOREM FoldRightConcat ==
ASSUME NEW Typ, NEW op(_,_), NEW base \in Typ,
\A t,u \in Typ : op(t,u) \in Typ,
\A t,u,v \in Typ : op(t, op(u,v)) = op(op(t,u), v),
\A t \in Typ : op(base, t) = t,
NEW ls \in Seq(Typ), NEW rs \in Seq(Typ)
PROVE FoldRight(op, ls \o rs, base) =
op(FoldRight(op, ls, base), FoldRight(op, rs, base))

(**************************************************************************)
(* FoldLeftDomain and FoldRightDomain cannot be characterized recursively *)
(* in terms of the same operators, we reduce them to MapThenFoldSet. *)
Expand Down
87 changes: 87 additions & 0 deletions modules/SequencesExtTheorems_proofs.tla
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,11 @@ THEOREM ConsAppend ==
PROVE Cons(x, Append(seq, y)) = Append(Cons(x,seq), y)
BY DEF Cons

THEOREM ConsConcat ==
ASSUME NEW S, NEW e \in S, NEW ls \in Seq(S), NEW rs \in Seq(S)
PROVE Cons(e, ls) \o rs = Cons(e, ls \o rs)
BY DEF Cons

THEOREM ConsInjective ==
ASSUME NEW S, NEW e \in S, NEW s \in Seq(S), NEW f \in S, NEW t \in Seq(S)
PROVE Cons(e,s) = Cons(f,t) <=> e = f /\ s = t
Expand Down Expand Up @@ -991,6 +996,47 @@ THEOREM FoldLeftType ==
BY <1>1, <1>2, SequencesInductionAppend, IsaM("blast")
<1>. QED BY <1>3 DEF P

(**************************************************************************)
(* Interaction of FoldLeft and concatenation when op is associative and *)
(* base is a right identity. *)
(**************************************************************************)
THEOREM FoldLeftConcat ==
ASSUME NEW Typ, NEW op(_,_), NEW base \in Typ,
\A t,u \in Typ : op(t,u) \in Typ,
\A t,u,v \in Typ : op(t, op(u,v)) = op(op(t,u), v),
\A t \in Typ : op(t, base) = t,
NEW ls \in Seq(Typ), NEW rs \in Seq(Typ)
PROVE FoldLeft(op, base, ls \o rs) =
op(FoldLeft(op, base, ls), FoldLeft(op, base, rs))
<1>. DEFINE P(r) == \A s \in Seq(Typ) :
FoldLeft(op, base, s \o r) =
op(FoldLeft(op, base, s), FoldLeft(op, base, r))
<1>1. \A s \in Seq(Typ) : FoldLeft(op, base, s) \in Typ
BY FoldLeftType, Isa
<1>2. P(<< >>)
<2>. TAKE s \in Seq(Typ)
<2>. QED
BY <1>1, FoldLeftEmpty, s \o << >> = s, Isa
<1>3. ASSUME NEW r \in Seq(Typ), NEW e \in Typ, P(r)
PROVE P(Append(r,e))
<2>. TAKE s \in Seq(Typ)
<2>1. FoldLeft(op, base, s \o Append(r,e)) =
FoldLeft(op, base, Append(s \o r, e))
OBVIOUS
<2>2. @ = op(FoldLeft(op, base, s \o r), e)
BY FoldLeftAppend, s \o r \in Seq(Typ), Isa
<2>3. @ = op(op(FoldLeft(op, base, s), FoldLeft(op, base, r)), e)
BY <1>3
<2>4. @ = op(FoldLeft(op, base, s), op(FoldLeft(op, base, r), e))
BY <1>1
<2>5. op(FoldLeft(op, base, r), e) = FoldLeft(op, base, Append(r, e))
BY FoldLeftAppend, Isa
<2>. QED BY <2>1, <2>2, <2>3, <2>4, <2>5
<1>4. \A s \in Seq(Typ) : P(s)
<2>. HIDE DEF P
<2>. QED BY <1>2, <1>3, SequencesInductionAppend, Isa
<1>. QED BY <1>4

(**************************************************************************)
(* Recursive characterization of FoldRight. *)
(**************************************************************************)
Expand Down Expand Up @@ -1105,6 +1151,47 @@ THEOREM FoldRightType ==
BY <1>1, <1>2, SequencesInductionCons, IsaM("blast")
<1>. QED BY <1>3 DEF P

(**************************************************************************)
(* Interaction of FoldRight and concatenation when op is associative and *)
(* base is a left identity. *)
(**************************************************************************)
THEOREM FoldRightConcat ==
ASSUME NEW Typ, NEW op(_,_), NEW base \in Typ,
\A t,u \in Typ : op(t,u) \in Typ,
\A t,u,v \in Typ : op(t, op(u,v)) = op(op(t,u), v),
\A t \in Typ : op(base, t) = t,
NEW ls \in Seq(Typ), NEW rs \in Seq(Typ)
PROVE FoldRight(op, ls \o rs, base) =
op(FoldRight(op, ls, base), FoldRight(op, rs, base))
<1>. DEFINE P(s) == \A r \in Seq(Typ) :
FoldRight(op, s \o r, base) =
op(FoldRight(op, s, base), FoldRight(op, r, base))
<1>1. \A r \in Seq(Typ) : FoldRight(op, r, base) \in Typ
BY FoldRightType, Isa
<1>2. P(<< >>)
<2>. TAKE r \in Seq(Typ)
<2>. QED
BY <1>1, FoldRightEmpty, << >> \o r = r, Isa
<1>3. ASSUME NEW s \in Seq(Typ), NEW e \in Typ, P(s)
PROVE P(Cons(e,s))
<2>. TAKE r \in Seq(Typ)
<2>1. FoldRight(op, Cons(e,s) \o r, base) =
FoldRight(op, Cons(e, s \o r), base)
BY ConsConcat
<2>2. @ = op(e, FoldRight(op, s \o r, base))
BY FoldRightCons, s \o r \in Seq(Typ), Isa
<2>3. @ = op(e, op(FoldRight(op, s, base), FoldRight(op, r, base)))
BY <1>3
<2>4. @ = op(op(e, FoldRight(op, s, base)), FoldRight(op, r, base))
BY <1>1
<2>5. op(e, FoldRight(op, s, base)) = FoldRight(op, Cons(e,s), base)
BY FoldRightCons, Isa
<2>. QED BY <2>1, <2>2, <2>3, <2>4, <2>5
<1>4. \A s \in Seq(Typ) : P(s)
<2>. HIDE DEF P
<2>. QED BY <1>2, <1>3, SequencesInductionCons, Isa
<1>. QED BY <1>4

(**************************************************************************)
(* FoldLeftDomain and FoldRightDomain cannot be characterized recursively *)
(* in terms of the same operators, we reduce them to MapThenFoldSet. *)
Expand Down
Loading