🚗 Starting EV Ride Booking Platform... ✅ Enhanced Fare model loaded ✅ Label encoders loaded ✅ Server ready!
EvRide
EvRide is an Electric Ride Booking platform built using the MERN stack (MongoDB, Express, React, Node.js) with Google Maps integration + Machine Learning based Fare & Distance Optimization.
This project provides users with an EV-focused ride booking experience for smart mobility with dynamic pricing.
Features:
1.User authentication and profile handling
2.Google Maps powered ride tracking & navigation
3.EV Ride booking & real-time ride status
4. AI/ML Powered Fare Prediction (Random Forest)
5.AI/ML Powered Distance Optimization
Machine Learning Used:
1.Fare Prediction Random Forest Regression Predict dynamic & optimized EV Ride Fare
Installation
Clone the repository:
git clone https://github.com/<your-account>/EvRide.git
cd EvRide
🛠️ Tech Stack
Backend
FastAPI (Python)
Uvicorn
CSV dataset processing
Frontend
HTML5
CSS3
JavaScript (Vanilla JS)
Leaflet.js
Frontend Flow
1.User enters pickup & drop location
2.JavaScript → calls FastAPI using fetch()
3.Backend → Calculates fare
4.Results are shown on UI interface
evride/
│── __pycache__/
│── credentials/ # API keys or auth related files (if any)
│── frontend/ # Additional UI files (if any)
│── models/ # ML model files, .pkl, etc.
│── app.js # Frontend JavaScript logic
│── app.txt
│── dataset_integration.py # CSV reading + dataset processing
│── front.html # UI (Main front page)
│── index.html # Homepage or ride summary page
│── main_enhanced.py # Main FastAPI server file (enhanced version)
│── main_integrated.py # FastAPI + model integrated version
│── style.css # Styling for the website
│── test_client.py # API testing script
│── your_ride_data.csv # Dataset used for fare prediction / analysis
Run the project:
1.Create Virtual Environment
python -m venv venv
source venv/bin/activate # (Windows) venv\Scripts\activate
2.Install Dependencies
pip install fastapi uvicorn pandas numpy
3.Run FastAPI Server
uvicorn main_integrated:app --reload
4.Open Frontend
Simply open front.html or index.html in your browser or open by live server
API Endpoints
1. Predict Fare
POST /predict_fare
Contributing:
Contributions are welcome!
Fork Repo
Create Feature Branch
Submit PR
License
This project is licensed under the MIT License.
Team / Author
Minor Project - EvRide
Team Members: Khushal Kumar Sahu + Keshav Agrawal + Khushi Agrawal
AI & ML Based EV Ride Optimization Project