Skip to content

The system is designed to process user descriptions or inputs related to vintage gaming consoles, such as the Interton Video Computer 4000, and generate structured summaries or specifications. It focu

Notifications You must be signed in to change notification settings

chigwell/vintageconsoleinfo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

VintageConsoleInfo

PyPI version License: MIT Downloads LinkedIn

A Python package for extracting structured information about vintage gaming consoles from unstructured user input. Ideal for collectors, enthusiasts, and restorers who need quick access to key details like hardware specs, game libraries, and historical context.


📦 Installation

Install the package via pip:

pip install vintageconsoleinfo

🚀 Features

  • Extracts structured data from textual descriptions of vintage consoles (e.g., Interton Video Computer 4000).
  • Supports customizable LLM backends (default: LLM7).
  • Uses regex pattern matching for reliable data extraction.
  • Works with OpenAI, Anthropic, Google, or any LangChain-compatible LLM.

🔧 Usage

Basic Usage (Default LLM7)

from vintageconsoleinfo import vintageconsoleinfo

# Example input about the Interton Video Computer 4000
user_input = """
The Interton Video Computer 4000 is a 1983 console with a Z80 CPU,
4KB RAM, and a built-in keyboard. It supports games like 'Space Invaders'
and 'Breakout'.
"""

response = vintageconsoleinfo(user_input)
print(response)  # Structured output (e.g., specs, games, etc.)

Custom LLM (e.g., OpenAI)

from langchain_openai import ChatOpenAI
from vintageconsoleinfo import vintageconsoleinfo

llm = ChatOpenAI(model="gpt-3.5-turbo")
response = vintageconsoleinfo(user_input, llm=llm)

Custom LLM (e.g., Anthropic)

from langchain_anthropic import ChatAnthropic
from vintageconsoleinfo import vintageconsoleinfo

llm = ChatAnthropic(model="claude-2")
response = vintageconsoleinfo(user_input, llm=llm)

Custom LLM (e.g., Google)

from langchain_google_genai import ChatGoogleGenerativeAI
from vintageconsoleinfo import vintageconsoleinfo

llm = ChatGoogleGenerativeAI(model="gemini-pro")
response = vintageconsoleinfo(user_input, llm=llm)

🔑 API Key Configuration

Default (LLM7)

  • Uses LLM7_API_KEY from environment variables or falls back to a default.
  • Free tier rate limits are sufficient for most use cases.
  • Get a free API key: LLM7 Registration.

Override API Key

response = vintageconsoleinfo(user_input, api_key="your_llm7_api_key")

📌 Parameters

Parameter Type Description
user_input str Text describing a vintage console (required).
api_key Optional[str] LLM7 API key (optional; defaults to env var).
llm Optional[BaseChatModel] Custom LangChain LLM (optional; defaults to ChatLLM7).

📝 Notes

  • The package uses LLM7 by default (via langchain_llm7).
  • For production use, ensure your LLM backend meets rate limits.
  • Extracted data follows a structured format (regex-based).

📜 License

MIT


📧 Support & Issues

Report bugs or request features at: 🔗 GitHub Issues


👤 Author

Eugene Evstafev 📧 hi@euegne.plus 🔗 GitHub: chigwell


Releases

No releases published

Packages

No packages published

Languages