Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,8 +61,8 @@ Furthermore, GraphGen incorporates multi-hop neighborhood sampling to capture co
After data generation, you can use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) and [xtuner](https://github.com/InternLM/xtuner) to finetune your LLMs.

## 📌 Latest Updates
- **2026.01.15**: Added support for synthesizing single-choice, multiple-choice, and fill-in-the-blank question types, suitable for educational and evaluation scenarios.
- **2025.12.26**: Added comprehensive knowledge graph evaluation metrics including accuracy assessment (entity/relation extraction quality), consistency assessment (conflict detection), and structural robustness assessment (noise ratio, connectivity, degree distribution).
- **2026.01.15**: **LLM benchmark synthesis** now supports single/multiple-choice & fill-in-the-blank—ideal for education 🌟🌟
- **2025.12.26**: Knowledge graph evaluation metrics about accuracy (entity/relation), consistency (conflict detection), structural robustness (noise, connectivity, degree distribution)
- **2025.12.16**: Added [rocksdb](https://github.com/facebook/rocksdb) for key-value storage backend and [kuzudb](https://github.com/kuzudb/kuzu) for graph database backend support.

<details>
Expand Down
14 changes: 7 additions & 7 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,17 +61,17 @@ GraphGen 首先根据源文本构建细粒度的知识图谱,然后利用期

在数据生成后,您可以使用[LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) 和 [xtuner](https://github.com/InternLM/xtuner)对大语言模型进行微调。

## 📌 最新更新
- **2026.01.15**: 支持合成单选题、多选题和填空题型数据,适用于教育和评测场景。
- **2025.12.26**: 新增知识图谱评估指标,包括准确度评估(实体/关系抽取质量)、一致性评估(冲突检测)和结构鲁棒性评估(噪声比、连通性、度分布)
- **2025.12.16**:新增 [rocksdb](https://github.com/facebook/rocksdb) 作为键值存储后端, [kuzudb](https://github.com/kuzudb/kuzu) 作为图数据库后端的支持。
## 📌 最新功能
- **2026.01.15**:合成垂域评测数据(单选题、多选题和填空题型)🌟🌟
- **2025.12.26**:引入知识图谱评估指标,包括准确度评估(实体/关系抽取质量)、一致性评估(冲突检测)和结构鲁棒性评估(噪声比、连通性、度分布)
- **2025.12.16**:支持 [rocksdb](https://github.com/facebook/rocksdb) 作为键值存储后端, [kuzudb](https://github.com/kuzudb/kuzu) 作为图数据库后端


<details>
<summary>历史更新</summary>
<summary>历史更新记录</summary>

- **2025.12.16**:新增 [vllm](https://github.com/vllm-project/vllm) 作为本地推理后端的支持
- **2025.12.16**:使用 [ray](https://github.com/ray-project/ray) 重构了数据生成 pipeline,提升了分布式执行和资源管理的效率。
- **2025.12.16**:支持 [vllm](https://github.com/vllm-project/vllm) 作为本地推理后端
- **2025.12.16**使用 [ray](https://github.com/ray-project/ray) 重构了数据生成 pipeline,提升了分布式执行和资源管理的效率。
- **2025.12.1**:新增对 [NCBI](https://www.ncbi.nlm.nih.gov/) 和 [RNAcentral](https://rnacentral.org/) 数据库的检索支持,现在可以从这些生物信息学数据库中提取DNA和RNA数据。
- **2025.10.30**:我们支持多种新的 LLM 客户端和推理后端,包括 [Ollama_client]([Ollama_client](https://github.com/open-sciencelab/GraphGen/blob/main/graphgen/models/llm/api/ollama_client.py), [http_client](https://github.com/open-sciencelab/GraphGen/blob/main/graphgen/models/llm/api/http_client.py), [HuggingFace Transformers](https://github.com/open-sciencelab/GraphGen/blob/main/graphgen/models/llm/local/hf_wrapper.py) 和 [SGLang](https://github.com/open-sciencelab/GraphGen/blob/main/graphgen/models/llm/local/sglang_wrapper.py)。
- **2025.10.23**:我们现在支持视觉问答(VQA)数据生成。运行脚本:`bash scripts/generate/generate_vqa.sh`。
Expand Down