diff --git a/README.md b/README.md index a7a04b7..d6f7ffa 100644 --- a/README.md +++ b/README.md @@ -5,16 +5,16 @@ described in http://www.library.uu.nl/digiarchief/dip/diss/1895620/inhoud.htm. This implementation is still in beta and is not yet optimized for large networks. -![example] (example.png) +![example](example.png) -##Installation +## Installation -python setup.py install +`python setup.py install` -##Usage +## Usage -###Command line +### Command line Usage: mcl_clustering.py [options] @@ -39,46 +39,46 @@ adjacency matrix. An example is the file example.csv in examples dir. -try: - mcl_clustering.py -d -e 3 /example.csv +try: `mcl_clustering.py -d -e 3 /example.csv` - -###Code +### Code -####Using numpy adjacency matrix +#### Using numpy adjacency matrix - from mcl_clustering import mcl +```python +from mcl_clustering import mcl - A = +A = - M, clusters = mcl(A, expand_factor = , - inflate_factor = , - max_loop = , - mult_factor = ) +M, clusters = mcl(A, expand_factor = , + inflate_factor = , + max_loop = , + mult_factor = ) +``` -####Using a networkx graph +#### Using a networkx graph - from mcl_clustering import networkx_mcl +```python +from mcl_clustering import networkx_mcl - G = +G = - M, clusters = networkx_mcl(G, expand_factor = , - inflate_factor = , - max_loop = , - mult_factor = ) +M, clusters = networkx_mcl(G, expand_factor = , + inflate_factor = , + max_loop = , + mult_factor = ) - - Output - M = otuput matrix - clusters = dict with keys = [] values = [] +Output + M = otuput matrix + clusters = dict with keys = [] values = [] +``` -##Requirements +## Requirements - numpy - networkx +- numpy +- networkx - -##References +## References * [1] Stijn van Dongen, Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, May 2000. @@ -89,7 +89,6 @@ try: Science in the Netherlands, Amsterdam, May 2000. ( http://www.cwi.nl/ftp/CWIreports/INS/INS-R0010.ps.Z ) - -# license +# License MIT